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Motivation

The present note is devoted to the measurement

theoretical aspects of the entangled states [1] char-

acterization. 1 Formulation of an effective compu-

tational algorithms for description of quantum en-

tangled states properties is highly important from

theoretical positions as well from the computing

and communications issues. In order to estimate

quantum computational resources of a given sys-

tem it is reasonable to “count” the entangled states.

From the measurement theoretical point of view,

(cf. [2],[3]), the “counting” of entangled states cor-

responds to the determination of a relative vol-

ume of entangled states with respect to all possi-

ble states. This number gives the geometric prob-

ability of entangled states [4]. It turned out, that

apart from this theoretical measurement issue, the

quantum separability problem has many interesting

and deep mathematical aspects, including the com-

putational ones. In particular, it was proved that

the problem is computationally NP-hard (cf. [5],

[6]) and even for low dimensional quantum systems

the calculations of entanglement characteristics are

cumbersome. Below we report on our computations

of the measurement theoretical characteristics of 2-

qubits and qubit-qutrit pairs, particularly present

the results of calculations of the geometric proba-

bility of the mixed separable/entangled states.

Selecting the separable matrices

The first issue to be addressed is the efficient

schemes formulation for selection of the separable

density matrices among all possible states. The

complete answer to the question, how to find the

separable density matrices among a random ensem-

ble of matrices, is unknown for a generic case. How-

ever, for two qubits (2 ⊗ 2) and qubit-qutrit pairs

(2 ⊗ 3), the well-established criterion exists.

• The Peres-Horodecki criterion • The fa-

1According to the definition the entangled states of a com-
posite finite dimensional quantum system form a subset of
all states complement to the states that are representable by
a convex combination of product states, with factors corre-
sponding to each subsystem.

mous Peres-Horodecki separability criterion [7],[8]

is based on the partial transposition operation. The

partial transpose ρTB of a density matrix ρ of binary

A ⊗ B system, with respect to the subsystem B is

defined as ρTB = I ⊗ T% , where T stands for the

standard transposition operation in subsystem B.

According to the Peres-Horodecki a given state ρ

in dimensions 2 ⊗ 2 and 2 ⊗ 3 is separable if its

partial transpose is positive and only then. Un-

fortunately, this criterion is not a universal. For

higher dimensions, there are entangled states with

a positive partial transpose (PPT). Even for binary,

3 ⊗ 3 system, one can find the counterexample for

the Peres-Horodecki criterion. However, if consid-

eration is restricted by 2 ⊗ 2 and 2 ⊗ 3 systems,

the checking of partially transposed matrices on the

semi-positivity reduces the selection issue to the cor-

rect algebraic problem. Furthermore, it turns that

the latter admits the efficient computational formu-

lation.

• Positivity of the density matrices • The

positive semi-definiteness of an arbitrary Hermitian

n × n matrix means non-negativity of its eigenval-

ues, xk ≥ 0 , k = 1, 2, . . . , n . Since eigenvalues {x}
are non-polynomial functions of matrix the usage

of these inequalities is not computationally effec-

tive. Fortunately, for the Hermitian matrix the

semi-positivity can be stated as non-negativity of

first n-symmetric polynomials in its eigenvalues

Sk ≥ 0 , k = 1, 2, . . . , n . (1)

Symmetric polynomials Sk are expressible as poly-

nomial functions of traces of powers of the density

matrix tk = Tr(ρk) , and therefore are very attrac-

tive from the computational point of view (cf. for

details [9], [10] and references therein).

Geometric probability

Based on the Peres-Horodecki criterion the sepa-

rability probability for bipartite systems of 2-qubits

or qubit-qutrit can be represented as:

Psep(P+ ∩ ˜P+) =

∫

P+∩
eP+

dµ
∫

P+

dµ
, (2)
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where the integrals in (2) are over the following

spaces: P+ - is the total space of states, ˜P+ - the

image of P+ under the partial transposition map

I⊗T. The intersection P+∩ ˜P+ represents the sub-

set of P+ that is invariant under the partial trans-

position map I ⊗ T :

P+ ∩ ˜P+ = {ρ ∈ P+ | I ⊗ Tρ ∈ P+} ,

The measure dµ in integrals (2) is determined by

the Riemannian metrics on the space of density

matrices. Below we state results of our evaluation

of integrals in (2) for two measures, the Hilbert-

Schmidt and Bures.2 Because straightforward cal-

culations of the multidimensional integral over the

semi-algebraic set P+ ∩ ˜P+ is not a simple task, it

is instructive to proceed with the numerical Monte-

Carlo methods. Generating the random density ma-

trices and then testing the symmetric polynomials,

constructed from the partially transposed matrices

ρTB , on the Peres-Horodecki conditions

STB

k ≥ 0 , k = 1, 2, . . . , n , (3)

we will find the relative number of separable states,

i.e. determine the probability (2).

The induced measure for mixed states

In our computations we adopt the method of

the induced measures (cf. [13, 14]) and consider

random density matrices distributed according to

the Hilbert-Schmidt and Bures probability measure.

Random matrices preparation procedure starts with

the Ginibre ensemble [15] generation. Let M(C, n)

is the space of n×n matrices whose entries are com-

plex numbers, distributed as independent standard

normal complex random variables

p(zij) =
1

π
exp(−|zij |) , i, j = 1, 2, . . . , n .

Ginibre’s measure of this probability distribution

for matrix Z ∈ M(C, n) is defined as

dµG(Z) =
1

πn2
exp

(

−Tr
(

Z†Z
))

Tr
(

dZ†dZ
)

. (4)

Having the random Ginibre matrices the simple al-

gorithms for generation the Hilbert-Schmidt and

the Bures ensembles exists [14].

• The Hilbert-Schmidt ensemble • In order

to generate the Hilbert-Schmidt states consider a

square n × n complex random matrix Z from the

2Since the volume of space of states in terms of both
Hilbert-Schmidt metric [11] and Bures metric [12] is known,
the problem of determination of separability probability re-
duces to the calculation of the integral over P+ ∩ eP+.

Ginibre ensemble. Introducing, for given Z, the ma-

trix

ρHS =
Z†Z

Tr (Z†Z)
, (5)

one can convinced that by construction % is Her-

mitian, positive definite with unit norm matrix and

furthermore represents an element from the Hilbert-

Schmidt ensemble.

• The Bures ensemble • The n×n density ma-

trix distributed in accordance with the Bures mea-

sure can be generated considering the random ma-

trix of the following form

ρB =
(I + U)ZZ+(I + U+)

Tr [(I + U)ZZ+(I + U+)]
. (6)

In (6) the complex matrix Z is an element of the

Ginibre ensemble, while U is a unitary matrix dis-

tributed according to the Haar measure on the uni-

tary group U(n) . As it was shown in [14], the prob-

ability distribution for matrices %B coincides with

the Bures one.

Sufficient conditions for 2-qubits

entanglement

Consider the system composed from pairs of

qubits A ⊗ B in generic 15-parameter mixed state

with density matrix written in the so-called Fano

form [16]:

ρ =
1

4
[I4 + a · σ ⊗ I2 + I2 ⊗ σ · b + cij σi ⊗ σj ] .

The parameters a, and b , are Bloch vectors of indi-

vidual qubits in states ρA and ρB , determined from

ρ by taking the partial traces:

ρA = TrB ρ , ρB = TrA ρ . (7)

Nine coefficients cij are entries of the “correlation

matrix” ||C||ij := cij , which comprise an informa-

tion on correlations occurring between A and B

parts. Based on the equations (3) we prove the fol-

lowing statement: Any density matrix ρ, obeying

the inequalities

det
2||M|| > 1 , det

2||C|| > 1 , (8)

with necessity is the entangled matrix. In (8) M

stands for the so-called Schllenz-Mahler matrix :

Mij := cij − aibj . (9)

The density matrices from the complementary do-

main

−1 ≤ det ||M|| ≤ 1 , −1 ≤ det ||C|| ≤ 1 , (10)
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Figure 1: Distribution of separable states with re-

spect to the correlation measure det ||C|| for 106 ma-

trices from the Hilbert-Schmidt ensemble.

Figure 2: Distribution of separable states with re-

spect to the Schllenz-Mahler entanglement measure

det ||M|| for 106 random Hilbert-Schmidt matrices.

are separable as well as entangled ones. Using the

above described algorithms for the generation of

random density matrices we analyze the distribu-

tion of separable matrices. Figure 1 and Figure 2

show the character of separable density matrices

distributions for 2 qubits with respect to det ||C||
and det ||M||.

Probabilities and conjectures

Finally we give the values of probabilities for 2-

qubits and qubit-qutrit composite systems, whose

density matrices are distributed according to the

the Hilbert-Schmidt and Bures probability measure.

The results of our numeric experiments are listed in

the Table 1, where the fractional approximations

for probabilities are given in the last column. Note

that our numerical computations strongly support

the fractional value 8/33 for qubits pairs separabil-

ity probability, that had been conjectured by P.B.

System Separable Rational Primes

H-S metric

2 ⊗ 2 24.24 %
8

33

23

3 ∗ 11

2 ⊗ 3 3.73 %
16

429

24

3 ∗ 11 ∗ 13

Bures metric

2 ⊗ 2 7.3 %
799

10843

799

7 ∗ 1549

2 ⊗ 3 0.1 %
79

63499

79

11 ∗ 13 ∗ 443

Table 1: Probabilities for 2-qubits and qubit-qutrit.

Slater few years ago [17]. At the same time, an

analytical derivation of this result as well as other

simple rational values given in the Table 1 remains

yet an interesting unsolved problem.
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